Nature

One mother for two species via obligate cross-species cloning in ants


  • Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (J. Murray, 1859).

  • Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Columbia Univ. Press, 1942).

  • Lehtonen, J., Schmidt, D. J., Heubel, K. & Kokko, H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol. Evol. 28, 297–306 (2013).

    PubMed 

    Google Scholar
     

  • Loi, P. et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolton, R. L. et al. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 3, R121–R146 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avise, J. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals (Oxford Univ. Press, 2008).

  • Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, S. J., Sword, G. A. & Lo, N. Polyphenism in insects. Curr. Biol. 22, 352 (2012).

    CAS 

    Google Scholar
     

  • Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P. & Keller, L. Nature versus nurture in social insect caste differentiation. Trends Ecol. Evol. 25, 275–282 (2010).

    PubMed 

    Google Scholar
     

  • Shapiro, A. M. in Evolutionary Biology (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 259–333 (Springer US, 1976).

  • Applebaum, S. W. & Heifetz, Y. Density-dependent physiological phase in insects. Annu. Rev. Entomol. 44, 317–341 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Romiguier, J., Fournier, A., Yek, S. H. & Keller, L. Convergent evolution of social hybridogenesis in Messor harvester ants. Mol. Ecol. 26, 1108–1117 (2017).

    PubMed 

    Google Scholar
     

  • Steiner, F. M. et al. Turning one into five: integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor ‘structor’. Mol. Phylogenet. Evol. 127, 387–404 (2018).

    PubMed 

    Google Scholar
     

  • Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Weyna, A., Bourouina, L., Galtier, N. & Romiguier, J. Detection of F1 hybrids from single-genome data reveals frequent hybridization in hymenoptera and particularly ants. Mol. Biol. Evol. 39, msac071 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umphrey, G. J. Sperm parasitism in ants: selection for interspecific mating and hybridization. Ecology 87, 2148–2159 (2006).

    PubMed 

    Google Scholar
     

  • Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306–309 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Darras, H. et al. Obligate chimerism in male yellow crazy ants. Science 380, 55–58 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacy, K. D., Shoemaker, D. & Ross, K. G. Joint evolution of asexuality and queen number in an ant. Curr. Biol. 29, 1394–1400 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuhn, A., Darras, H., Paknia, O. & Aron, S. Repeated evolution of queen parthenogenesis and social hybridogenesis in Cataglyphis desert ants. Mol. Ecol. 29, 549–564 (2020).

    PubMed 

    Google Scholar
     

  • Seifert, B. The Ants of Central and North Europe (lutra Verlags- und Vertriebsgesellschaft, 2018).

  • Lebas, C. Influence des activités humaines sur la répartition des fourmis du genre Messor dans les Pyrénées-Orientales (Hymenoptera: Formicidae: Myrmicinae). Osmia https://doi.org/10.47446/osmia9.9 (2021).

  • Heimpel, G. E. & de Boer, J. G. Sex determination in the hymenoptera. Annu. Rev. Entomol. 53, 209–230 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwander, T. & Oldroyd, B. P. Androgenesis: where males hijack eggs to clone themselves. Philos. Trans. R. Soc. Lond. B 371, 20150534 (2016).


    Google Scholar
     

  • Pichot, C., Borrut, A. & El Maâtaoui, M. Unexpected DNA content in the endosperm of Cupressus dupreziana A. Camus seeds and its implications in the reproductive process. Sex. Plant Reprod. 11, 148–152 (1998).

    CAS 

    Google Scholar
     

  • Komaru, A., Ookubo, K. & Kiyomoto, M. All meiotic chromosomes and both centrosomes at spindle pole in the zygotes discarded as two polar bodies in clam Corbicula leana: unusual polar body formation observed by antitubulin immunofluorescence. Dev. Genes Evol. 210, 263–269 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Fournier, D. et al. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230–1234 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohkawara, K., Nakayama, M., Satoh, A., Trindl, A. & Heinze, J. Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol. Lett. 2, 359–363 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearcy, M., Goodisman, M. A. D. & Keller, L. Sib mating without inbreeding in the longhorn crazy ant. Proc. Biol. Sci. 278, 2677–2681 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okita, I. & Tsuchida, K. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi. Naturwissenschaften 103, 22 (2016).

    PubMed 

    Google Scholar
     

  • Weyna, A., Romiguier, J. & Mullon, C. Hybridization enables the fixation of selfish queen genotypes in eusocial colonies. Evol. Lett. 5, 582–594 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman, V., Darras, H., Tranter, C., Aron, S. & Hughes, W. O. H. Cryptic lineages hybridize for worker production in the harvester ant Messor barbarus. Biol. Lett. 12, 20160542 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purugganan, M. D. What is domestication? Trends Ecol. Evol. 37, 663–671 (2022).

    PubMed 

    Google Scholar
     

  • Jaron, K. S. et al. Convergent consequences of parthenogenesis on stick insect genomes. Sci. Adv. 8, eabg3842 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glémin, S., François, C. M. & Galtier, N. Genome evolution in outcrossing vs. selfing vs. asexual species. Methods Mol. Biol. 1910, 331–369 (2019).

    PubMed 

    Google Scholar
     

  • Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).


    Google Scholar
     

  • de Pedro, M. et al. Demography, genetic diversity and expansion load in the colonizing species Leontodon longirostris (Asteraceae) throughout its native range. Mol. Ecol. 30, 1190–1205 (2021).

    PubMed 

    Google Scholar
     

  • Glémin, S. & Bataillon, T. A comparative view of the evolution of grasses under domestication. New Phytol. 183, 273–290 (2009).

    PubMed 

    Google Scholar
     

  • Frantz, L. A. F., Bradley, D. G., Larson, G. & Orlando, L. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21, 449–460 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Darwin, C. The Variation of Animals and Plants under Domestication (John Murray, 1868).

  • Gentry, A., Clutton-Brock, J. & Groves, C. P. The naming of wild animal species and their domestic derivatives. J. Archaeol. Sci. 31, 645–651 (2004).


    Google Scholar
     

  • Anderson, K. E. et al. Distribution and evolution of genetic caste determination in Pogonomyrmex seed-harvester ants. Ecology 87, 2171–2184 (2006).

    PubMed 

    Google Scholar
     

  • Spribille, T., Resl, P., Stanton, D. E. & Tagirdzhanova, G. Evolutionary biology of lichen symbioses. New Phytol. 234, 1566–1582 (2022).

    PubMed 

    Google Scholar
     

  • Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B 370, 20140330 (2015).


    Google Scholar
     

  • Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, W. M. The ant‐colony as an organism. J. Morphol. 22, 307–325 (1911).


    Google Scholar
     

  • Boomsma, J. J. & Gawne, R. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol. Rev. Camb. Philos. Soc. 93, 28–54 (2018).

    PubMed 

    Google Scholar
     

  • Maynard-Smith, J. & Szathmary, E. The Major Transitions in Evolution, Vol. 49 (Oxford Univ. Press, 1997).

  • West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiqi, A. M., Rajakumar, A. & Abouheif, E. Origin and elaboration of a major evolutionary transition in individuality. Nature 585, 239–244 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinform. 13, 278–289 (2015).


    Google Scholar
     

  • Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 224 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boomsma, J. J. et al. The Global Ant Genomics Alliance (GAGA). Myrmecol. News 25, 61–66 (2017).


    Google Scholar
     

  • Xu, M. et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, giaa094 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Tilak, M.-K. et al. A cost-effective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. Conserv. Genet. Resour. 7, 37–40 (2015).


    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).


    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, 2019).

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevreux, B. et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Allio, R. et al. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892–905 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juvé, Y. et al. One mother for two species: obligate cross-species cloning in ants. Zenodo https://doi.org/10.5281/zenodo.11506545 (2025).

  • Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–D451 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romiguier, J. et al. Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. Curr. Biol. 32, 2942–2947 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lau, M. K. et al. Draft Aphaenogaster genomes expand our view of ant genome size variation across climate gradients. PeerJ 7, e6447 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nygaard, S. et al. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res. 21, 1339–1348 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).

    PubMed 

    Google Scholar
     

  • Branstetter, M. G., Longino, J. T., Reyes-López, J. L., Brady, S. G. & Schultz, T. R. Out of the temperate zone: a phylogenomic test of the biogeographical conservatism hypothesis in a contrarian clade of ants. J. Biogeogr. 49, 1640–1653 (2022).


    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlupp, I. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst. 36, 399–417 (2005).


    Google Scholar
     

  • Lavanchy, G. & Schwander, T. Hybridogenesis. Curr. Biol. 29, 539 (2019).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    WyomingDigitalNews